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Abstract
It is shown that the so(4, 2) spectrum generating algebra for the classical
Kepler problem for non-zero energies can be obtained from the generators of
the spacetime conformal group SO(4, 2). This is achieved by exploiting the
equivalence of Kepler motion and null geodesic motion in conformally flat
Einstein static spacetimes. We show that it is the existence of a time-dependent
representation of the so(4, 2) spectrum generating algebra for null geodesic
motion in the Einstein static spacetimes (originating from the so(4, 2) algebra
of first integrals) which determines the corresponding spectrum generating
algebra structure in the classical Kepler problem. Further, for the zero energy
state, it is shown that only the iso(3) invariance subalgebra has a direct physical
significance.

PACS numbers: 45.10.Na, 45.20.Jj, 45.50.Pk, 02.40.Ky, 02.20.Sv

1. Introduction

Consider an arbitrary Hamiltonian system with Hamiltonian functionH(x, y), where x and y
are conjugate coordinates and momenta respectively, and let λ be the time parameter. The first
integrals of motion C(x, y; λ) satisfy

∂C

∂λ
+ {H,C} = 0 (1)

and form a Lie algebra. The time-independent first integrals of motion C(x, y) satisfy the
Poisson bracket relation

{H,C} = 0. (2)

The set of time-independent first integrals form a subalgebra and constitute a representation of
the invariance algebra or symmetry algebra of the Hamiltonian system [1]. Equation (1) is the
classical version of the following statement: if ψ(x; λ) is any solution of the time-dependent
Schrödinger equation[

i
∂

∂λ
−H(x, y)

]
ψ(x; λ) = 0 (3)
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then C(x, y; λ)ψ(x; λ) is also a solution of the same equation if C satisfies

i
∂C

∂λ
− {H,C} = 0. (4)

If ∂C/∂λ �= 0 then Cψ is a linear combination of eigenstates of H with different energies,
that is C generates the spectrum of H. Thus the Lie algebra of (time-dependent and time-
independent) first integrals is said to form a time-dependent representation (TDR) of the
spectrum generating algebra of the Hamiltonian system [2–5]. We shall only be concerned
with finite-dimensional spectrum generating algebras. The spectrum generating algebra is also
known as the non-invariance or dynamical algebra. The elements of the spectrum generating
algebra are the infinitesimal generators of the spectrum generating group of the Hamiltonian
system, which is the group of transformations mapping orbits into orbits [5]. The subalgebra
with ∂C/∂λ = 0 is the invariance algebra and under quantization, this invariance leads to the
degeneracy of the energy levels of the dynamical system and the associated operators commute
with the Hamiltonian [2]. If C(x, y; λ) is a first integral then ∂C/∂λ is a first integral and (1)
implies that {H,C} is also a first integral. It follows that, given a Lie algebra of first integrals,
either H is an element of that Lie algebra or the Lie algebra can be supplemented by H to
generate a larger Lie algebra. In both cases, we have that the Hamiltonian H maps the Lie
algebra into itself by the Poisson bracket operation, i.e. if we label the basis first integrals
CJ (x, y; λ), J = 1, . . . , r , then

{H,CI } = DJ
I CJ (5)

for some structure constants DJ
I , I = 1, . . . , r − 1, and Cr = H . Thus, (1) and (5) can be

thought of as equivalent definitions. Further, if we consider the stationary system λ = 0, then
the quantities CI (x, y; λ = 0) form a time-independent representation (TIR) of the algebra.
The spectrum generating group is a non-compact group, an irreducible representation space
of which contains all the states of the system and the non-compact generators of which are
associated with the energy operator [6–18].

In this paper, we construct the spectrum generating algebra for the classical Kepler
problem, i.e. the Hamiltonian system with Hamiltonian

H = |y|2
2

− α

|x| (6)

by exploiting the equivalence between Kepler motion and geodesic motion on a related
manifold. From the introductory remarks above, we can see that the problem reduces to
that of finding the algebra of (time-dependent and time-independent) first integrals of Kepler
motion, and this approach has a number of advantages over previous methods. In other words,
we determine a TDR of the spectrum generating algebra.

First we review known results. The three-dimensional classical Kepler problem is known
to admit three further first integrals of motion, in addition to the components of angular
momentum [19–24]. The bound states in the quantized Kepler problem have SO(4) symmetry,
which was used to solve for the energy spectrum, and explain the degeneracy, of the hydrogen
atom [25–28]. In fact, the classical Kepler problem has SO(4), ISO(3) and SO(3, 1) symmetry
for negative, zero and positive energy orbits respectively [1]. Thus there is a one-to-one
correspondence between the symmetry algebras for motion in the classical Kepler problem
and geodesic motion on three-dimensional spaces of constant curvature,for each energy surface
(i.e. the three-sphere with positive curvature, Euclidean three-space with zero curvature and
the three-hyperboloid with negative curvature). This is due to the equivalence of Hamiltonian
flows on the phase space [29–35]. Bacry [36] demonstrated that, for bound states in the
classical Kepler problem, the generators of the SO(4) invariance group can be supplemented
to give a TIR of an SO(4, 1) non-invariance group. Bander and Itzykson show that the
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SO(4, 1) group connects various energy levels in the hydrogen atom [37] and also in the
case of scattering states [38]. Sudarshan and Mukunda [39] consider the action of these
non-invariance groups from both a quantum mechanical and classical point of view. This new
group can be further extended to generate the full spectrum generating group SO(4, 2) [40–43]
and has immediate application to the group dynamics of the hydrogen atom [44–48]. It should
be noted that the SO(2, 1) subgroup is sufficient to generate an energy spectrum depending
only on the principal quantum number but does not give any information on the degeneracies.
SO(4, 2) contains all the operators necessary to allow transitions between arbitrary negative
energy (or positive energy) states [47–49]. The case of zero energy has largely been avoided in
the literature, with the exception of Barut [49] (see also Lindblad and Nagel [50]) who shows
that the SO(2, 1) generators for the non-zero energy states do not provide an energy spectrum
for the case H = E = 0.

The appearance of the Lie group SO(4, 2) requires explanation. The Lie group SO(4, 2)
arises in a number of physical systems. This Lie group is defined to be the isotropy group in
R4,2 and it also arises as the conformal symmetry group of Minkowski spacetime and hence
all conformally flat spacetimes [51–55]. Barut and Bornzin [56] consider various ways to
unify the spacetime conformal group with the dynamical group but state in the introduction to
their paper that a conclusive and final answer is yet to be found. In [56], various methods are
devised for unifying the group structures, using both a six-dimensional and a four-dimensional
approach, i.e. physical processes are considered to take place in a six- or four-dimensional
‘Minkowski space’ with a suitable projection to obtain the familiar dynamical groups. Souriau
[32] refers to the space of non-zero covectors of S3, denoted by T +S3, as the Kepler manifold
and shows that T +S3 is a minimal co-adjoint orbit of SO(4, 2), see also [57–62]. Baumgarte
[63] derives the non-invariance Lie algebra so(4, 2) and then constructs the KS-transformation,
which maps the three-dimensional Kepler motion into the four-dimensional oscillator (see also
[64]). Kummer [65] relates Moser’s regularization procedure to the KS-regularization for the
three-dimensional classical Kepler problem (for non-zero energies) and discusses the role
of SO(4, 2) and SU(2, 2) in these schemes. Iwai [66] and Mladenov [67] associate the
four-dimensional harmonic oscillator with the three-dimensional Kepler problem and MIC-
Kepler problem respectively. Guillemin and Sternberg [62] show that the Kepler motion can
be enlarged to geodesic flow on a curved Lorentzian five-dimensional manifold. In their
work, the mass parameter is directly related to a conjugate momentum coordinate in the
cotangent bundle. Cordani [54] (see also [55]) derives the conformal symmetry generators
in conformally flat spacetimes (in an inverted coordinate system) from the isotropy group
generators in R4,2. Cordani then provides a (energy-dependent) canonical transformation on
the eight-dimensional phase space giving the equations of motion for the classical Kepler
problem (which applies in the case of non-zero energies only) and then obtains a TIR of the
so(4, 2) algebras for non-zero energies by taking an appropriate hypersurface (time equal
to zero). Cariñena et al [68] investigate the conformal geometry of both the Kepler orbit
configuration space and momentum space. They determine the action of an SO(3, 2) Lie
group in the configuration space and then show the dynamical role of another realization of
the SO(3, 2) Lie group and these group actions are shown not to be equivalent.

In [69] it was shown how the methods of [29–31] could be unified in a continuous way (in
particular there is no energy rescaling of the type used in, for example, [29, 30, 54, 65]). In this
paper we extend the method of [69], exploiting the continuity wherever possible, to generate
the time-dependent first integrals of Kepler motion. The Einstein static spacetimes are foliated
by three-dimensional spaces of constant curvature k parametrized by a time coordinate. Thus
it is natural to write the equations of geodesic motion on such a three-dimensional space
in terms of geodesic motion on such a static four-dimensional spacetime manifold. These
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spacetimes are conformally flat and so admit 15 conformal Killing vector fields with Lie
algebra so(4, 2) [70]. In the case of null geodesics only, all 15 conformal Killing vectors yield
first integrals of motion and the corresponding Poisson bracket Lie algebra is also so(4, 2).
Here we extend the procedure in [69] so that these time-dependent first integrals become
time-dependent first integrals of motion for the classical Kepler problem. This extension is
based upon the following. Given the flow

d

dλ
= ∂

∂λ
+ F X̂

3
H (7)

it can be reparametrized by dτ = F dλ (τ is the Kepler time, λ is the eccentric anomaly) to
give

d

dλ
= F

d

dτ
= F

[
∂

∂τ
+ X̂3

H

]
(8)

which guarantees that the first integrals of motion for the former system are also first integrals
of motion for the latter [71]. In general such a parameter transformation is non-canonical.
However, for the case of non-zero energies H = E �= 0 this can be made to correspond
to a canonical transformation and so preserves the Poisson bracket structures. Cordani [54]
explains the appearance of a TIR of the so(4, 2) algebra satisfying (5) for geodesic motion
in the Einstein static spacetimes and this becomes a TIR of the spectrum generating algebra
for Kepler motion since the corresponding Kepler Hamiltonian is a function of that for the
geodesic motion problem. However, the H = E = 0 state causes some difficulties. In this
paper, we show that it is the existence of a TDR of the so(4, 2) spectrum generating algebra for
null geodesic motion in the Einstein static spacetimes (originating from the so(4, 2) algebra
of first integrals) which determines the corresponding spectrum generating algebra structure
in the classical Kepler problem via equation (8). We address the case of zero energy directly:
the integration τ (λ) for E = 0 is carried out separately from that for E �= 0 and as such, only
provides a set of configurational invariants for the E = 0 energy surface. Further, only the
subset of time-independent first integrals of motion for E = 0 form a Lie algebra. We explain
why Cordani’s canonical transformation [54] is inadequate for the case of zero energy—this
is because the new time coordinate is a first integral for null geodesic motion in Minkowski
spacetime (k = 0) and a constant of motion cannot be a time coordinate!

We summarize the new results: we present a map from the Einstein static spacetimes
which gives time-dependent first integrals of motion for non-zero energies, time-dependent
configurational invariants for zero energy, TDR and TIR of so(4, 2) spectrum generating
algebra for non-zero energies only, iso(3) invariance algebra for zero energy and an explanation
of the inadequacy of the time coordinate (3.15) in [54] for zero energy.

In section 2 we briefly outline some of the concepts necessary for the description of
Hamiltonian systems. We outline some results on conformal symmetries of Riemannian
and Lorentzian manifolds in section 3 for use in later sections. In this section, we also
consider the conformal invariance of null geodesics and the resulting conservation laws in
curved spacetimes. We consider the Einstein static spacetimes in section 4 and outline the
conformal symmetry properties of these spacetimes. We then specialize to the case of null
geodesic motion in Einstein static spacetimes in section 4.2, and in section 4.3 we implement
a canonical transformation on the eight-dimensional phase space allowing us to relate this
system to the classical Kepler problem. In particular, the transformation relates the time
coordinates of the two systems. In section 5.1 we obtain the spectrum generating algebra for
the classical Kepler problem for non-zero values of energyE = H from the conformal Killing
vector first integrals of null geodesic motion in the Einstein static spacetimes and we verify
that we recover the results of [2, 43]. In section 5.2 we deal with the zero energy states: we use
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an appropriate parameter transformation which allows us to relate the Kepler time to the time
coordinate in Minkowski spacetime. In section 5.3 we present the associated TIRs obtained
from the TDRs by setting time equal to zero and in the appendix an alternative interpretation
of the TIR is given. Finally, in section 6 we give an overview and outline the significance of
the results.

2. Hamiltonian systems and Lie algebras

A 2n-dimensional symplectic manifoldN2n endowed with a closed nondegenerate symplectic
2-form ω̃ is denoted by (N, ω̃). For a symplectic manifold (N, ω̃), the Hamiltonian vector
field X̂n

f corresponding to the function f : N �→ R is defined as the unique smooth vector
field on N satisfying

ω̃
(
X̂n
f

) = −df.

The manifoldN2n is described locally by the coordinates (x1, . . . , xn, y1, . . . , yn) and we can
write ω̃ = dyi∧dxi . It follows that the Hamiltonian vector field corresponding to the function
f has the form

X̂n
f = ∂f

∂yµ

∂

∂xµ
− ∂f

∂xν

∂

∂yν
. (9)

We can define the following operation for two functions f, g :N �→ R :

〈f, g〉n = X̂n
f (g). (10)

A transformation φ:N �→ N which leaves ω̃ invariant φ∗ω̃ = ω̃ is said to be canonical. Note
that from now on we shall drop the dimension superscripts n to prevent the notation from
becoming cluttered, and we shall re-introduce it when appropriate. The Hamiltonian vector
fields are the infinitesimal generators of such transformations, that is the Lie derivative of ω̃
with respect to the Hamiltonian vector field X̂f is zero,

LX̂f
ω̃ = 0 (11)

i.e. the integral curve of the Hamiltonian vector field X̂f preserves ω̃.
Consider the direct product spaceW = R ×N which is a (2n + 1)-dimensional manifold

locally described by the coordinates (x1, . . . , xn, y1, . . . , yn, λ). Let H : W �→ R with
dH �= 0 be the Hamiltonian function on W . Then we can define a closed 2-form onW by

ω̃H = dyi ∧ dxi − dH ∧ dλ. (12)

Then (W, ω̃H ) is said to be an evolution space [5]. Define

ẐH = ∂

∂λ
+ X̂H . (13)

Then

LẐH ω̃H = 0 (14)

i.e. the integral curve of ẐH preserves ω̃H [5]. The Poisson bracket of two functions
f, g : W �→ R is given by

{f, g}(x, y, ; λ) = 〈fλ, gλ〉(x, y). (15)

The Hamiltonian function H is the function which gives the canonical equations of motion
in the given phase space (N, ω̃). In this paper, we shall consider time-independentHamiltonian
functionsH(x, y). A Hamiltonian system is a symplectic manifold (N, ω̃) endowed with such
a Hamiltonian function H and denoted by (N, ω̃,H). The Hamiltonian vector field

X̂H (16)

represents the phase flow from which one can read the Hamilton equations of motion.
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2.1. First integrals

A non-constant function C(x, y; λ) : W �→ R is a first integral of motion if

dC

dλ
= ẐH (C) = 0. (17)

This is equivalent to equation (1). Note that time-independent first integrals satisfy
X̂H(C) = 0. Poisson’s theorem states that the Poisson bracket of two first integrals is a
first integral: for any two functions f and g we have

d

dλ
{f, g} =

{
df

dλ
, g

}
+

{
f,

dg

dλ

}
(18)

and the result follows from the fact that df/dλ and dg/dλ are identically zero. The first
integrals form a Lie algebra under Poisson bracket operation. Note that, in general, such a Lie
algebra need not be of finite dimension.

2.2. Configurational invariants

Let us now consider the configurational invariants [72–74] RI (x, y; λ) : W �→ R satisfying

ẐH (RI ) = HFI (19)

where FI is an arbitrary function. The RI are only constants of motion for H = 0. When
referring to a set of quantities as configurational invariants, it shall be understood that there
may be a subset of true first integrals, i.e. satisfying (17) for an arbitrary value of H. Let us
now investigate the associated Poisson bracket relations amongst the RI . Equation (18) then
reads

d

dλ
{RI ,RJ } = {HFI ,RJ } + {RI ,HFJ }

= H({FI ,RJ } + {RI , FJ }) + FI {H,RJ } + FJ {RI ,H }
= H({FI ,RJ } + {RI , FJ }) + FJ

∂RI

∂λ
− FI

∂RJ

∂λ
(20)

the last line coming from relation (19). The first term vanishes on H = 0 hypersurfaces.
However, the remaining term is not necessarily equal to zero since the FI are arbitrary
independent functions on the phase space. Thus, the above relation (20) tells us that the
Poisson bracket of two configurational invariants is not necessarily a configurational invariant.
However, there are special cases: (i) if a set of RI are time-independent then their Poisson
brackets will be time-independent configurational invariants, and so will form a Lie algebra;
(ii) if CI is a time-independent first integral (i.e. ∂CI/∂λ = 0 and FI = 0) then the
Poisson bracket with any other configurational invariant RJ is a (possibly time-dependent)
configurational invariant. If the Poisson bracket operation does not introduce further new
time-dependent configurational invariants then the set will form a Lie algebra. To summarize,
if we have a set of time-dependent configurational invariants then they do not necessarily form
a Lie algebra under the Poisson bracket operation.

2.3. Lie algebras

Consider a function f (x, y; λ) : W �→ R. If ẐH (f ) = g and H(x, y) is a time-independent
Hamiltonian function then it follows that ẐH (∂f/∂λ) = ∂g/∂λ. In particular, if C(x, y; λ)
is a first integral then ∂C/∂λ is a first integral, and if R(x, y; λ) is a configurational invariant
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then ∂R/∂λ is a configurational invariant. If we have a Lie algebra of first integrals CI then
equation (5) gives

∂

∂λ
CI (x, y; λ) = DJ

I CJ (x, y; λ) (21)

and the solution set has the form [2]

CI (x, y; λ) = (eDλ)JI CJ (x, y; λ = 0). (22)

It follows from definition (15) that the equal time Poisson brackets for CI (x, y; λ = 0)
are identical to those for CI (x, y; λ). Thus, given the quantities CI (x, y; λ) one can
determine CI (x, y; λ = 0) and conversely, given CI (x, y; λ = 0) one can determine
CI (x, y; λ). However, note that for time-dependent quantitiesCI , the corresponding quantities
CI (x, y; λ = 0) are not necessarily first integrals (in fact, only the time-independent first
integrals will remain so). As was stated in the introduction, the first integrals of motion
CI (x, y; λ) and CI (x, y; λ = 0) constitute the TDR and TIRs of the spectrum generating
algebra, respectively, of the Hamiltonian system.

Now we shall state the relationship between the Lie algebra structures on the configuration
space and the phase space. Let N2n be the 2n-dimensional phase space, or cotangent bundle,
corresponding to the n-dimensional configuration space manifoldMn, i.e.N2n = T ∗Mn. Now
consider a Lie algebra of vector fields YI with structure constants DK

IJ on the configuration
space Mn, i.e.

[YI ,YJ ] = DK
IJYK. (23)

Then it follows that the scalar quantities YI = Y iI yi have the Poisson brackets

{YI ,YJ } = DK
IJYK (24)

and that the corresponding Hamiltonian vector fields X̂YI on T ∗Mn share the same structure
constants, i.e. [

X̂YI , X̂YJ
] = DK

IJ X̂YK . (25)

2.4. Homogeneous Hamiltonian systems

Given a 2n-dimensional Hamiltonian system (T ∗	, ω̃,H),H = H(xi, yj ), i, j = 1, . . . , n,
then one can construct a corresponding homogeneous 2(n+1)-dimensional Hamiltonian system
(T ∗M, 
̃,H) where T ∗M = T ∗R × T ∗	 and H = y0 + H = 0. The flow on T ∗M then
corresponds to the flow onT ∗	 given by H [64], i.e. the Hamiltonian vector field corresponding
to H on T ∗M is

X̂H = X̂y0 + X̂H = ∂

∂x0
+ X̂H = ẐH . (26)

The reverse procedure will be termed reduction. In addition, the Poisson brackets {CI ,CJ }n+1

on T ∗M correspond to those {CI ,CJ }n on T ∗	. The Poisson brackets for the quantities CI in
(T ∗M, 
̃) can be written as

{CI ,CJ }n+1 = {CI ,CJ }0 + {CI ,CJ }n (27)

where

{CI ,CJ }0 = ∂CI

∂y0

∂CJ

∂x0
− ∂CI

∂x0

∂CJ

∂y0
{CI ,CJ }n = ∂CI

∂yi

∂CJ

∂xi
− ∂CI

∂xj

∂CJ

∂yj
. (28)

Now, on T ∗	 consider the case where CI = CI (x
i, yj , f ; λ) where f = f (xk, yl). Then

{CI ,CJ }n = {CI ,CJ }n|f + {CI , f }n ∂CJ
∂f

∣∣∣∣
xy

−{CJ , f }n ∂CI
∂f

∣∣∣∣
xy

. (29)
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Now, if we choose f = y0 = −H then from equation (17) we have {CI , f }n = −∂CI/∂x0,
λ = x0 and so

{CI ,CJ }n = {CI ,CJ }n|x0y0 − ∂CI

∂x0

∂CJ

∂y0

∣∣∣∣
xy

+
∂CJ

∂x0

∂CI

∂y0

∣∣∣∣
xy

≡ {CI ,CJ }n+1 (30)

where CI = CI (x
i, yj , x

0, y0). Thus the Poisson bracket commutation relations between the
first integrals of motion on the 2(n + 1)-dimensional Hamiltonian system (T ∗M, 
̃,H) are
identical to those for the equal time Poisson brackets for the corresponding 2n-dimensional
system (T ∗	, ω̃,H).

3. Conformal symmetries of configuration space

Consider an n-dimensional manifold M with (Riemannian or Lorentzian) metric tensor g. Let
y be an arbitrary geodesic tangent vector and ξ i = ξ i(xj ) an arbitrary vector field. Then ξ iyi
is the component of the vector field ξ along the geodesic tangent vector y. We can investigate
the variation of the quantities ξ iyi along such a geodesic. It is straightforward to show that
for an arbitrary vector field ξ

X̂G(ξ
iyi) = (Lξg)(y, y)/2 (31)

where G is the Hamiltonian function G = g(y, y)/2 and Lξ denotes the Lie derivative with
respect to ξ .

A transformation �:M �→ M such that �: g �→ ψ(xi)g is called a conformal
transformation and the set of such transformations forms a group. The subset of continuous
transformations forms a Lie group and the corresponding infinitesimal generators form a Lie
algebra. The infinitesimal generators ξ of conformal transformations on M are referred to as
conformal Killing vector fields (CKVs) and satisfy

Lξg = 2φ(xi)g. (32)

If the function φ = constant for some vector field ξ then ξ is called a homothetic Killing
vector field (HKV) and if φ = 0 then ξ is called a Killing vector field (KV). The HKVs form
a subalgebra as do the KVs. It follows from (31) that if ξ is a CKV then

X̂G(ξ
iyi) = 2φG (33)

Thus, if ξ is a KV then ξ iyi is a first integral of geodesic motion. If the CKV ξ is not a
KV, then ξ iyi is conserved in the case of G = 0 only, i.e. ξ iyi is a configurational invariant
satisfying (19). However, these are time parameter independent and so their Poisson bracket
is a configurational invariant and the set has a Lie algebra structure.

Suppose a manifold with metric g admits a CKV ξ . Then any conformally related space
with metric tensor g̃ = 
2(xi)g also admits ξ as a CKV. We can investigate the Lie derivative
of this metric tensor with respect to the conformal Killing vectors of g. We have that

Lξ (g̃) = Lξ (
2)g +
2Lξ (g) = 2φ̃
2g (34)

where φ̃ = [ξ(ln
)+φ], i.e. a CKV ξ of g is necessarily a CKV of g̃ with conformal factor φ̃.
Now consider a four-dimensional spacetime manifold M with metric tensor g of Lorentz

signature. If the CKV ξ is not a KV, then ξ iyi is conserved in the case of null geodesics only.
Thus, writing null geodesic motion in terms of the Hamiltonian function G = g(y, y)/2 = 0,
we have from equation (17) that R = ξ iyi are configurational invariants for the system, i.e.

X̂4
G(R) = 2φG. (35)

Of course, since R are independent of the time parameter, by remark (i) in section 2.2, they
form a Lie algebra. The null geodesics are conformally invariant: consider a spacetime with
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metric tensor g, then geodesic motion can be written in terms of the Hamiltonian function
G = g(y, y)/2. Now consider a conformally related spacetime with metric tensor g̃ = 
2(xi)g.
It follows that the corresponding Hamiltonian function is given by G̃ = 
−2G and geodesic
motion on the new spacetime is given by the flow

X̂4
G̃ = 
−2X̂4

G + 2G
−3 ∂


∂xi

∂

∂yi
. (36)

Thus, in general the two Hamiltonian vector fields corresponding to G and G̃ are not parallel.
However, when we consider null geodesics (G = 0) the last term vanishes and the Hamiltonian
vector fields become parallel. Upon a change of parameter dλ̃ = 
2 dλ the null geodesics
are mapped into null geodesics. It follows that the null geodesic structure is preserved under
conformal transformations.

4. Einstein static spacetimes

4.1. Geometry

In the following, Greek indices take the values 0, 1, 2, 3, Latin indices take the values 1, 2, 3
and the Einstein summation rule is assumed unless otherwise indicated. In this and the
following sections a ·b ≡ aibi and |a|2 ≡ δija

iaj . Let (	, g) be a three-dimensional manifold
of Euclidean signature with constant curvature k. We shall refer to the four-dimensional
product space M = R × 	 of Lorentz signature as an Einstein static spacetime (M,G). The
manifold 	 is described locally by the coordinates xi and the manifold M by the coordinates
xα ≡ (x0, xi). The three-dimensional space 	 is conformally Euclidean, the line element
being

ds2 = K−2
+ δij dxi dxj (37)

whereK± = (1±k|x|2/4) and k is a constant. The four-dimensional Einstein static spacetime
(M,G) is conformally Minkowskian. The line element for (M,G) has the form

ds2 = −(dx0)2 +K−2
+ δij dxi dxj . (38)

However, we have chosen not to write the line element in a manifestly conformally
Minkowskian form since the form above is more convenient for our present purposes—see [70]
for the transformation xα = xα(zβ) required to put (38) in a conformally Minkowskian form.

Minkowski spacetime has the line element

ds2 = ηαβ dzα dzβ = −(dz0)2 + δij dzi dzj . (39)

The conformal symmetry group of Minkowski spacetime is the 15-parameter conformal group
SO(4, 2) and includes the isometry group ISO(3, 1). The 15 CKVs are

Tα = ∂

∂zα
Mαβ = zα

∂

∂zβ
− zβ

∂

∂zα

D = zα
∂

∂zα
Kα = 2zαzβ

∂

∂zβ
− (zβzβ)

∂

∂zα

(40)

where zα = ηαβz
β and we shall refer to this as the Minkowski basis. The commutation

relations for the vector fields (40) are as follows

[Mαβ ,Mγ δ] = ηαδMβγ + ηβγMαδ + ηαγMδβ + ηβδMγα

[Tα,Tβ ] = 0 [Tα,Mβγ ] = ηβαTγ − ηγαTβ
[Kα,Kβ] = 0 [Kα,Mβγ ] = ηβαKγ − ηγαKβ (41)

[D,Kα] = Kα [D,Mαβ ] = 0 [Tα,D] = Tα
[Tα,Kβ] = 2(ηαβD − Mαβ)
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Table 1. The conformal scalars for the CKV of Einstein static spacetime (M,G).

Vector field Conformal scalar Type

T0 φ = −kεK−K−1
+ /2 CKV

Ti φ = −kK−1
+ θxi/2 CKV

M0i φ = kK−1
+ εxi CKV

Mij φ = 0 KV
D φ = K−K−1

+ θ CKV
K0 φ = −2εK−K−1

+ CKV
Ki φ = 2K−1

+ θxi CKV

which is isomorphic to the Lie algebra so(4, 2) [70]. The ten KVs Tα and Mβγ form an
iso(3,1) isometry subalgebra.

Since the Einstein static spacetimes are conformally Minkowskian, they are conformally
invariant under the action of the conformal group SO(4, 2). The 15 CKVs for the Einstein
static spacetimes (38) for arbitrary values of curvature k can be derived by constructing a
direct map from Minkowski spacetime [70]. In the following, the quantity ε is defined by the
relation dx0 = dε/θ(ε) where θ(ε) = (1 − kε2)

1
2 . The 15 CKVs can be written as [70]

T0 = 1
2 (V0 + E) Ti = 1

2 (Vi + Si)

M0i = −θK−1
+ xi

∂

∂x0
− ε

(
−Vi + 2

∂

∂xi

)
Mij = xi

∂

∂xj
− xj

∂

∂xi

D = εK−K−1
+

∂

∂x0
+ θ

(
xj

∂

∂xj

)

K0 = − 4ε(
θ +K−K−1

+
)D − 4(

θ +K−K−1
+

)2

(−ε2 + |x|2K−2
+

)
T0

Ki = 4K−1
+ xi(

θ +K−K−1
+

)D − 4(
θ +K−K−1

+
)2

(−ε2 + |x|2K−2
+

)
Ti

(42)

where

V0 = ∂

∂x0
Vi = K−

∂

∂xi
+
k

2
xi

(
xj

∂

∂xj

)

E = K−K−1
+ θ

∂

∂x0
− kε

(
xj

∂

∂xj

)
Si = −kεK−1

+ xi
∂

∂x0
+ θ

(
−Vi + 2

∂

∂xi

)
.

The corresponding conformal scalars are given in table 1. It is important to note that the
vector fields (42) have Lie brackets (41), i.e. the structure constants are independent of the
value of k. Note that for k = 0, xα = zα and we get the Minkowski CKV (41). We can
choose an alternative basis consisting of M0i ,Mij ,D,V0,Vi , E,Si for the case where k �= 0,
for k = 0 these do not span a 15-dimensional vector space and so has to be excluded (see
section 5.1 of [70]). When k �= 0 there is a seven-dimensional KV subalgebra with basis
Mij ,Vi and V0, and a further six-dimensional KV subalgebra with basis Mij ,Vi and the latter
is isomorphic to so(4) and so(3, 1) for k > 0 and k < 0 respectively. We now present the 15
associated quantities RI = ξ

β

I yβ which constitute a basis for the Poisson bracket Lie algebra
of configurational invariants, i.e. first integrals for null geodesics (see section 4.2). We shall
write Tα = (Tα)βyβ etc. They are as follows,



Spectrum generating algebras for the classical Kepler problem 8093

T0 = 1
2 (V0 + E) Ti = 1

2 (Vi + Si )
M0i = −θK−1

+ xiy0 − ε(−Vi + 2yi) Mij = xiyj − xjyi

D = εK−K−1
+ y0 + θ(x · y)

K0 = − 4ε(
θ +K−K−1

+
)D − 4(

θ +K−K−1
+

)2

(−ε2 + |x|2K−2
+

)
T0

Ki = 4K−1
+ xi(

θ +K−K−1
+

)D − 4(
θ +K−K−1

+
)2

(−ε2 + |x|2K−2
+

)
Ti

(43)

where

V0 = y0 Vi = K−yi +
k

2
xi(x · y)

E = K−K−1
+ θy0 − kε(x · y) Si = −kεK−1

+ xiy0 + θ(−Vi + 2yi).

Equation (24) implies that the Poisson bracket Lie algebra of these configurational
invariants is identical to that for the corresponding CKV, i.e. the Lie algebras have the same
structure constants. We note that, amongst these first integrals of null geodesic motion (which
are independent of the parameter λ), including the Hamiltonian, there can be at most seven
which are functionally independent [71, 75]. Thus, once the value of the Hamiltonian has
been specified (i.e. G = 0) there can be only six other functionally independent first integrals.
We note that when k �= 0 we can write

ε = 1√
k

sin(
√
kx0) θ(ε) = cos(

√
kx0) k > 0 (44)

ε = 1√−k sinh(
√−kx0) θ(ε) = cosh(

√−kx0) k < 0. (45)

4.2. Null geodesic motion

Let (T ∗	, ω̃) be the six-dimensional cotangent bundle associated with 	. Further, let
(xi, yj ) be local coordinates on (T ∗	, ω̃) and (xα, yβ) ≡ (x0, xi, y0, yj ) be local coordinates
on the eight-dimensional cotangent bundle (T ∗M, 
̃) where 
̃ is the symplectic 2-form

̃ = ω̃ + dy0 ∧ dx0.

Consider an Einstein static spacetime (M,G). Then geodesic motion in such a
spacetime can be represented in the eight-dimensional phase space by the Hamiltonian system
(T ∗M, 
̃,G) where the Hamiltonian function G is defined as

G = − 1
2y

2
0 +G G = K2

+ |y|2/2. (46)

The geodesic phase flow is represented on the evolution space R × T ∗M by the vector field

Ẑ4
G (47)

and since the 15 configurational invariantsRI (xα, yβ) given in (43) have no explicit parameter
dependence,

dRI
dλ

= X̂4
G(RI ) = 2φG. (48)

Of course, the KVs (φ = 0) yield first integrals for arbitrary values of the Hamiltonian G. The
RI (x

α, yβ) are all first integrals for null geodesic motion G = 0.



8094 A J Keane

We can consider the geodesic motion on (	, g) as a reduction (see section 2.4) of the null
geodesic motion on (M,G). This immediately provides us with a basis for the 15-dimensional
spectrum generating algebra for the system (T ∗	, ω̃). First, we implement the trivial canonical
transformation

x ′0 = −x0/y0 x ′i = xi y ′
0 = −(y0)

2/2 y ′
j = yj .

It follows that

G = y ′
0 +G (49)

and

X̂4
G = −y0

∂

∂x0
+ X̂3

G = ∂

∂x ′0 + X̂3
G = Ẑ3

G = d

dx ′0 .

Second, by restricting to null geodesic motion on the Einstein static spacetime i.e.
(T ∗M, 
̃,G = 0)y0 is replaced everywhere by y0 = y0(x

i, yj , x
0) and we have that the

quantities CI (xi, yj , x0) are 15 time (x ′0) dependent first integrals for geodesic motion on a
three-dimensional space of constant curvature k, i.e. the RI for (T ∗M, 
̃,G) become CI for
(T ∗	, ω̃,G). It then follows from (30) that the spectrum generating algebra is isomorphic
to so(4, 2). Note that CI (xi, yj , x0 = 0) form the associated TIR. Thus we obtain a basis
for the spectrum generating algebra for geodesic motion on the three-dimensional space 	 of
constant curvature k. Dothan (section V.A. of [2]) presents the ten-dimensional subalgebra for
the case of geodesic motion in flat Euclidean space k = 0.

Let us now consider the TIRs of the spectrum generating algebras associated with geodesic
motion on 	. Quantities (43) with x0 = 0 form the TIR for geodesic motion on the space 	
of constant curvature k for all values of k: we present an alternative basis composed of the 15
quantities M0i ,Mij ,D,V0,Vi , E,Si which is valid for non-zero values of k only,

M0i = −|y|xi Mij = xiyj − xjyi D = (x · y) V0 = K+|y|
Vi = K−yi + k(x · y)xi/2 E = K−|y| Si = −Vi + 2yi.

(50)

From the remarks made in section 2.3, these 15 quantities still constitute a basis for the Lie
algebra so(4, 2) and we see that V0 plays the role of a Hamiltonian

√
2G. For a fixed value of

k, this spectrum generating algebra allows transitions between states with different values of
G > 0.

In the following sections, we use a similar method to obtain the spectrum generating
algebra for the classical Kepler problem. The difference lies in the properties of the canonical
transformation used.

4.3. Canonical transformations on (T ∗M, 
̃)

It has been shown [69] that the Kepler equations of motion can be derived from the equations
of geodesic motion on three-dimensional spaces of constant curvature k via the following three
transformations: spatial coordinate inversion,

x ′i = xi

|x|2 x ′0 = x0 y ′
i = |x|2yi − 2xi(x · y)

y ′
0 = y0 (canonical transformation I)

spatial position/momenta interchange,

x̄i = y ′
i/2

√
2 x̄0 = x ′0 ȳi = −2

√
2x ′i

ȳ0 = y ′
0 (canonical transformation II)
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and the parameter transformation

dτ = F dλ (51)

where F = √
G|x̄|. Note that the general solution to the differential equation (51) can be

written in terms of Stumpff functions [64]. However, we use a more direct approach which is
equivalent to, but more enlightening than, the integration in [64].

In this section, we show that the parameter transformation (51) can be integrated and
extended to give a canonical transformation in the eight-dimensional phase space T ∗M . We
begin by considering the quantity D = x0y0 + (x · y). We find that

X̂4
G(D) = 2G − 2kF (52)

and so on null surfaces G = 0 we have
dD

dλ
= −2kF . (53)

At this point, we make a very important observation: for the special case where k = 0 the
quantity D = D, which is a first integral of motion. We can introduce the parameter τ , by
equation (51), and it follows that

dD

dτ
= −2k. (54)

At this point, we note that equation (54) can be integrated to give

−2kτ = D (55)

and we take an arbitrary constant to be zero. Thus we can regard the quantity −D/2k as a
new coordinate for non-zero values of k. D cannot be regarded as a time coordinate for k = 0
and this case is dealt with separately in section 5.2.

The transformation (55) can be extended to T ∗M to give a canonical transformation as
follows. (Note that since τ has the status of a canonical coordinate on the eight-dimensional
phase space, we re-label it as q0, and k has the status of a canonical momentum p0.)

qk =
√

2ȳ0x̄
k/α q0 = 2[x̄0ȳ0 + (x̄ · ȳ)](ȳ0/α)

2

pk = αȳk/
√

2ȳ0 p0 = −α2/4ȳ2
0 (canonical transformation III)

with inverse

x̄k = −
√

−2p0q
k x̄0 =

√
2
[ − q0(−2p0)

3
2 + (−2p0)

1
2 (q · p)]/α

ȳ0 = −α/
√

−4p0 ȳk = −pk/
√

−2p0.

The quantity α is an arbitrary non-zero constant and we note that p0 < 0 necessarily. We
emphasize that the canonical transformations I, II and III are independent of the value of k.
Under canonical transformations I and II the Hamiltonian G becomes

G = −1

2
ȳ2

0 +
1

4

(
k +

|ȳ|2
2

)2

|x̄|2 (56)

and under the canonical transformation III

(−8p0)G = −α2 +

(
−2p0k +

|p|2
2

)2

|q|2. (57)

At this point, we can see that G = 0 implies (making a sign choice)

α =
(

−2p0k +
|p|2

2

)
|q|. (58)

The Hamiltonian vector field on T ∗M corresponding to the function (−8p0)G on the LHS of
equation (57) is

−8GX̂4
p0

+ (−8p0)X̂4
G (59)
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and the first term vanishes when G = 0. Ultimately we find, using equations (57) and (58),

X̂4
G = α|q|

(−4p0)

[
−2k

∂

∂q0
+ X̂

]
(60)

where

X̂ = pi
∂

∂qi
− α

|q|3 q
j ∂

∂pj
. (61)

Thus, the Hamiltonian vector field X̂4
G corresponding to the flow given by G is parallel to the

vector field in the parentheses on the RHS of equation (60). Now it is important to realize that
the canonical transformations I, II and III used to achieve this result are independent of the
value of k and so are valid for all values of k. However, equation (60) reinforces the fact that
q0 is not a time coordinate for the case k = 0. It is equation (60) that provides the link with
the Kepler problem: X̂ is seen to be the Hamiltonian vector field on T ∗	 corresponding to
the Kepler motion [69]. It only remains to rescale the time coordinate (for k �= 0) so that the
vector field in the parentheses in equation (60) gives the time evolution of the Kepler problem.

5. The classical Kepler problem

5.1. Non-zero energy states

For the case where k �= 0 we can introduce further new canonical coordinates

Qi = qi Q0 = −q0/2k Pj = pj

P0 = −2kp0 (canonical transformation IV)

and equation (60) becomes

X̂4
G = αk|Q|

2P0

[
∂

∂Q0
+ X̂3

]
. (62)

Equation (58) gives

−P0 = |P |2
2

− α

|Q| (63)

which we immediately recognize as the Hamiltonian for the Kepler problem and accordingly
we write H = −P0. Since p0 < 0 necessarily, k has opposite sign to Kepler Hamiltonian
H = +2kp0. The Hamiltonian vector field in the parentheses on the RHS of equation (62) is

X̂4
H = ∂

∂Q0
+ X̂H (64)

where

H = H + P0 = 0. (65)

Under reduction, the Hamiltonian vector field in (64) is equivalent to

ẐH = ∂

∂Q0
+ X̂H (66)

on the evolution space R × T ∗	. The fact that the phase flows are parallel means that the
flows are equivalent under a change of parameter (noting that F = α|Q|/2),

dϒ = −kF
H

dλ (67)
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and that the first integrals CI (xi, yj , x0, y0) for the system (T ∗M, 
̃,G = 0) are first
integrals of motion for the system corresponding to phase flow (66). Thus the first integrals
CI (x

i, yj , x
0, y0) ≡ CI (q

i, pj , q
0, p0) ≡ CI (Q

i, Pj ,Q
0, P0) become the first integrals for

the system (T ∗M, 
̃,H = 0) and ultimately the first integrals of motion for the Kepler
Hamiltonian system (T ∗	, ω̃,H)with associated evolution space (W, ω̃H ) and time parameter
Q0. Thus the equations of motion for the classical Kepler problem for non-zero values of
energy can be derived from those equations of motion corresponding to null geodesic motion
in an Einstein static spacetime of non-zero curvature k and the quantities CI are first integrals
of motion for both systems. Transformations I–IV are collectively equivalent to that in [54]
except for the presence of the mass parameter α. The so(4, 2) Poisson bracket structure
is preserved by the correspondence in equations (23) and (24) in section 2.3, the canonical
transformations I–IV and the canonical nature of the reduction procedure in section 2.4.

We now give a basis for the TDR of the spectrum generating algebra of the classical
Kepler problem. We simply take expressions (43) and apply the canonical transformations
I–IV. We then have
T0 = 1

2 (V0 + E) Ti = 1
2 (Vi + Si )

M0i = 2αθ

(|P |2 − 2H)
Pi − ε[−Vi +

√
−k/2H(−|P |2Qi + 2(Q · P)Pi)]

Mij = QiPj −QjPi

D = −α
√

−k/2H
[ |P |2 + 2H

|P |2 − 2H

]
ε + θ(Q · P)

K0 = −4ε(|P |2 − 2H)

[θ(|P |2 − 2H) + (|P |2 + 2H)]
D − 4

[−ε2(|P |2 − 2H)2 − 8H |P |2/k]

[θ(|P |2 − 2H) + (|P |2 + 2H)]2
T0

Ki = 8
√

2
√−H/kPi

[θ(|P |2 − 2H) + (|P |2 + 2H)]
D − 4

[−ε2(|P |2 − 2H)2 − 8H |P |2/k]

[θ(|P |2 − 2H) + (|P |2 + 2H)]2
Ti

(68)

where
V0 = −α

√
−k/2H Vi =

√
−k/2H [−(|P |2 + 2H)Qi + 2(Q · P)Pi ]/2

E = −α
√

−k/2H
[ |P |2 + 2H

|P |2 − 2H

]
θ − kε(Q · P)

Si = 2αkε

(|P |2 − 2H)
Pi + θ

[−Vi +
√

−k/2H(−|P |2Qi + 2(Q · P)Pi)
]

(69)

and θ and ε are functions of the new time coordinate x̄0 = x̄0(Q0,Qi, Pj ).
Now, we can write these expressions explicitly for the cases of negative and positive

energies separately, bearing in mind relations (44), (45) and the functional form for the Kepler
Hamiltonian H. For negative energies, we have

T0 = 1
2 (V0 + E) Ti = 1

2 (Vi + Si )

M0i = |Q|Pi cosβ −
√

−1/2H

[
− α

|Q|Q
i + (Q · P)Pi

]
sinβ

Mij = QiPj −QjPi

D = −
√

−1/2H(2H |Q| + α) sin β + (Q · P) cosβ

K0 = −4 sinβ√
k[cosβ + (|P |2 + 2H)|Q|/2α]

D +
16[α2 sin2 β + 2H |P |2|Q|2]

k[2α cosβ + (|P |2 + 2H)|Q|]2
T0

Ki = 8
√−2HPi

[(2α/|Q|) cosβ + (|P |2 + 2H)]
D +

16[α2 sin2 β + 2H |P |2|Q|2]

k[2α cosβ + (|P |2 + 2H)|Q|]2
Ti

(70)
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where

V0 = −α
√

−k/2H Vi =
√

−k/2H [−(|P |2 + 2H)Qi + 2(Q · P)Pi ]/2
E = −

√
−k/2H(2H |Q| + α) cosβ −

√
k(Q · P) sin β

Si =
√
k|Q|Pi sin β +

√
−k/2H

[
− α

|Q|Q
i + (Q · P)Pi

]
cosβ

(71)

and β is defined (in accordance with [43]) as

β =
√
kx̄0 = √−2H [−2HQ0 + (Q · P)]/α. (72)

The basis for the spectrum generating algebra presented in [2] and in case 1 of [43] is composed
of the 15 quantitiesM0i ,Mij ,D,V0,Vi , E,Si . It is important to stress that the Poisson bracket
commutation relations for the spectrum generating algebra presented in [2, 43] are the equal
time Poisson brackets {CI ,CJ }3.

We can easily obtain similar expressions for the case of positive energies,

T0 = 1
2 (V0 + E) Ti = 1

2 (Vi + Si )

M0i = |Q|Pi coshβ −
√

1/2H

[
− α

|Q|Q
i + (Q · P)Pi

]
sinh β

Mij = QiPj −QjPi

D = −
√

1/2H(2H |Q| + α) sinh β + (Q · P) cosh β

K0 = −4 sinhβ√−k[coshβ + (|P |2 + 2H)|Q|/2α]
D +

16[−α2 sinh2 β + 2H |P |2|Q|2]

k[2α coshβ + (|P |2 + 2H)|Q|]2
T0

Ki = 8
√−2HPi

[(2α/|Q|) coshβ + (|P |2 + 2H)]
D +

16[−α2 sinh2 β + 2H |P |2|Q|2]

k[2α coshβ + (|P |2 + 2H)|Q|]2
Ti

(73)

where

V0 = −α
√

−k/2H Vi =
√

−k/2H [−(|P |2 + 2H)Qi + 2(Q · P)Pi ]/2
E = −

√
−k/2H(2H |Q| + α) cosh β +

√−k(Q · P) sinh β

Si = −√−k|Q|Pi sinh β +
√

−k/2H
[
− α

|Q|Q
i + (Q · P)Pi

]
coshβ

(74)

and β is defined as

β = √−kx̄0 =
√

2H [−2HQ0 + (Q · P)]/α. (75)

5.2. Zero energy states

In view of equation (54), we must look elsewhere for the case of zero energy states in the
Kepler problem. In order to treat the case of zero energy, we consider the null geodesic
motion in Minkowski spacetime (39), i.e. G = 0 and k = 0 [69]. We integrate expression (51)
for τ for the case where k = 0 and find that it is not possible to extend this to a canonical
transformation on the eight-dimensional phase space. The time transformation is used to
obtain explicit expressions for the time-dependent configurational invariants for the Kepler
motion and we investigate the Poisson bracket structure.

It is straightforward to show that (51) can be integrated to give the following expression
for τ , and its inverse,

4τ = 1
3 |y|4λ3 − (x · y)|y|2λ2 + |y|2|x|2λ + 4c (76)

λ = −[J (w −w−1)− (x · y)]/|y|2 (77)
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where J 2 = |x|2|y|2 − (x · y)2 is the square of the angular momentum andw is defined below.
The flows are related by (8) and we emphasize that τ does not have the status of a canonical
time coordinate. However, we can still make an overall parameter change λ �→ τ , as in
equation (8), ensuring that the first integrals of null geodesic motion in Minkowski spacetime
become configurational invariants of Kepler motion for H = E = 0.

Let us verify expressions (76) and (77). For the case k = 0 only we find that

d

dλ
(x · y) = X̂3

G(x · y) = 2G. (78)

We also have (in fact the following equation applies for all values of k)

dF
dλ

= G(x · y). (79)

From these two equations, it follows that

F = G2λ2 + aλ + b (80)

where a and b are constants. Explicitly

a = G(x · y)− 2G2λ (81)

We integrate to get the following transformation,

τ = 1
3G

2λ3 + 1
2aλ

2 + bλ + c (82)

and G = 0 implies G = y2
0

/
2 = |y|2/2, giving equation (76). This can be rewritten in terms

of the Minkowski time x0 = −λy0 and we take y0 = |y|. Thus

4τ = − 1
3 |y|(x0)3 − (x · y)(x0)2 − |y‖x|2x0 + 4c. (83)

Now we wish to invert this in order to express x0 in terms of τ . We can get rid of the squared
term by making the substitution x0 = X0 − (x · y)/y0, i.e.

−
(

12

y0

)
τ = (X0)3 +mX0 + e (84)

where the functions m and e are given by

m = 3J 2/|y|2 e = [2(x · y)3 − 3(x · y)|x|2|y|2 − 12c|y|2]/|y|3. (85)

Equation (84) can be inverted to give X0 as a function of τ . This is done by noting that the
equation

6� = γ 3 + 3γ

has the solution (section 4.1 of [77])

γ = w − w−1

where w3 = 3� + s and s =
√

1 + 9�2. In this case

� = −|y|3
6J 3

(
e +

12τ

|y|
)

γ = |y|X0/J.

Thus

X0 = J (w −w−1)/|y|. (86)

Finally, we can solve for x0,

x0 = [J (w − w−1)− (x · y)]/|y| (87)

and substituting for λ gives equation (77).
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The 15 first integrals of motion for null geodesic motion in Minkowski spacetime are
(equations (42) with k = 0)

T0 = y0 Ti = yi Mij = xiyj − xjyi

M0i = −xiy0 − x0yi D = x0y0 + xiyi (88)

K0 = −2x0D − (−(x0)2 + |x|2)y0 Ki = 2xiD − (−(x0)2 + |x|2)yi.
These correspond to 15 configurational invariants forH = E = 0 in the Kepler problem.

These can be expressed in Kepler coordinates (x̄i, ȳj , τ ) via canonical transformations I and
II,

T0 = |x̄||ȳ|2/2
√

2 Ti = [|ȳ|2x̄i − 2(x̄ · ȳ)ȳi]/2
√

2

Mij = x̄i ȳj − x̄j ȳi M0i = −|x̄|ȳi + x0[|ȳ|2x̄i − 2(x̄ · ȳ)ȳi]/2
√

2

D = x0|x̄||ȳ|2/2
√

2 + (x̄ · ȳ) (89)

K0 = −2x0D − [−(x0)2 + 8/|ȳ|2]|x̄||ȳ|2/2
√

2

Ki = −4
√

2Dȳi/|ȳ|2 − [−(x0)2 + 8/|ȳ|2][|ȳ|2x̄i − 2(x̄ · ȳ)ȳi]/2
√

2

where x0, given in Kepler coordinates, is as follows:

x0 = 2
√

2[J (w −w−1)− (x̄ · ȳ)]/|x̄||ȳ|2. (90)

The Kepler Hamiltonian takes the form [69]

H = |ȳ|2
2

− α

|x̄| (91)

where α = √
4G. Now, since X0 was defined such that y0X

0 = D, it is a time-dependent
configurational invariant. Since J is a first integral and |y| is a configurational invariant, from
(86) it follows that �, γ and

π = (|y|e + 12τ ) (92)

are also time-dependent configurational invariants. The latter is a convenient quantity to have
since it is linear in the time parameter τ .

We make an important point regarding the nature of the configurational invariants (89)
and (92): since they satisfy (19), this set does not necessarily form a Lie algebra under the
Poisson bracket operation, see section 2.2. However, as also noted in section 2.2, the subset of
first integrals will form a Lie algebra, in this case the set of six time-independent first integrals
Ti and Mij form the six-dimensional iso(3) algebra

{Mi ,Mj } = −εkijMk {Mi , Tj } = −εkijTk {Ti , Tj } = 0 (93)

the iso(3) structure is guaranteed by the canonical nature of the transformations I and II (of
course, this is unaffected by the subsequent non-canonical time-parameter transformation).
Can the Lie algebra (93) be increased by introducing a single time-dependent configurational
invariant? (Introducing two or more would introduce, via the Poisson bracket operation,
quantities that are not configurational invariants.) We are free to choose any of the time-
dependent configurational invariants above but we choose to consider the quantity which is
linear in the Kepler time τ . Introducing π ′ = 2π |y| ≡ π |x̄||ȳ|2/√2 we have the following
Poisson brackets,

{Mi , π
′} = 0 {Ti , π ′} = −12J 2Ti +Hηi (94)

where ηi = (12|ȳ|2τ − 2(x̄ · ȳ))[(x̄ · ȳ)x̄i − |x̄|2ȳi]. Now, since the latter Poisson bracket
produces a time-dependent configurational invariant, which is not a linear combination of
the Ti ,Mij or π ′, the bracket of this quantity and π ′ will introduce quantities which are not
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configurational invariants and so the set of configurational invariants (including the set of
time-independent first integrals) will not form a Lie algebra. Further, it seems that the square
of the angular momentum J 2 cannot be scaled out to give a Lie algebra structure iso(3)⊕s d

even on theH = E = 0 hypersurfaces. It turns out that there is no closed Lie algebra structure
for any of the time-dependent configurational invariants above. However, by construction,
we should not have expected to obtain a spectrum generating algebra allowing transitions
between different Kepler energies H since the time-dependent quantities in (89) and (92) are
only constants of motion for H = E = 0.

Thus we can only conclude that the energy eigenvalue E = 0 must be excluded from
the domain of the standard so(4, 2) spectrum generating algebra for the Kepler problem.
However, the six time-independent first integrals do form a six-dimensional iso(3) symmetry
algebra (93).

5.3. TIRs of the spectrum generating algebras

Quantities (70) and (73) with Q0 = 0 form TIRs of the spectrum generating algebras for the
classical Kepler problem for non-zero values of H only. For H < 0 we have a convenient
basis

M0i = |Q|Pi cos�−
√

−1/2H

[
− α

|Q|Q
i + (Q · P)Pi

]
sin�

Mij = QiPj −QjPi

D = −
√

−1/2H(2H |Q| + α) sin� + (Q · P) cos�

V0 = −α
√

−k/2H Vi =
√

−k/2H [−(|P |2 + 2H)Qi + 2(Q · P)Pi ]/2
E = −

√
−k/2H(2H |Q| + α) cos�−

√
k(Q · P) sin�

Si =
√
k|Q|Pi sin� +

√
−k/2H

[
− α

|Q|Q
i + (Q · P)Pi

]
cos�

(95)

and for H < 0 the quantity � is given by

� = √−2H(Q · P)/α. (96)

We can easily obtain similar expressions for the case H > 0,

M0i = |Q|Pi cosh�−
√

1/2H

[
− α

|Q|Q
i + (Q · P)Pi

]
sinh�

Mij = QiPj −QjPi

D = −
√

1/2H(2H |Q| + α) sinh� + (Q · P) cosh�

V0 = −α
√

−k/2H Vi =
√

−k/2H [−(|P |2 + 2H)Qi + 2(Q · P)Pi ]/2
E = −

√
−k/2H(2H |Q| + α) cosh� +

√−k(Q · P) sinh�

Si = −√−k|Q|Pi sinh� +
√

−k/2H
[
− α

|Q|Q
i + (Q · P)Pi

]
cosh�

(97)
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and for H > 0 the quantity � is given by

� =
√

2H(Q · P)/α. (98)

We observe that in both spectrum generating algebras (95) and (97) the quantityV0 is a function
of the Hamiltonian H, i.e. the Hamiltonain does indeed map the algebra into itself, as we would
expect. Now, one can consider the eight non-compact generators M0i ,D, E,Si , writing them
collectively as JA,A = 1, . . . , 8. Then a canonical transformation of the form [78]

J ′
a = exp (̃n · J )Ja = Rba(n)Jb (99)

gives a new canonical basis for negative energies [43, 55]

Ai = [|P |2Qi − 2(Q · P)Pi ]/2
√

2 Mi = εkijQ
jPk

N = (Q · P) Bi = −2
√

2Qi Ii = −
√

2|Q|P i√
G± = (|P |2 ± 2k)|Q|/4

(100)

the notation is chosen in accordance with the appendix. One can carry out the same procedure
for positive energies (97) and we obtain the same basis (100). Thus, (100) is an alternative
realization of the TIR of the spectrum generating algebra for the classical Kepler problem for
non-zero energies.

The quantities (95) and (97) constitute the TIR of the spectrum generating algebra so(4, 2)
for negative and positive energies respectively in the classical Kepler problem and those which
do not commute with the Hamiltonian H correspond to transitions between the different energy
states with energyH < 0 and H > 0 respectively.

From the results obtained in section 5.2 we must conclude that the operators (95) and (97),
or equivalently (100), do not constitute a TIR of the spectrum generating algebra for the case
of zero energy in the classical Kepler problem. We emphasize the following: the quantities
(50) constitute the TIR of the spectrum generating algebra so(4, 2) for the geodesic motion
problem for G > 0 and those which do not commute with the Hamiltonian G correspond to
transitions between the different energy states with energy G > 0. We note that we can use
the canonical transformations I and II to obtain from the quantities (50) directly the spectrum
generating algebras for the non-zero energies in the classical Kepler problem (100). We
remark that placing k = 0 in (50) does not give a spectrum generating algebra forE = H = 0
in the Kepler problem. One does have a representation of the so(4, 2) algebra but it has no
dynamical role (except for the iso(3) subgroup).

In the appendix, we give an alternative geometrical interpretation of the TIR of the
spectrum generating algebra (50).

6. Conclusions

We have shown that the equations of null geodesic motion in Einstein static spacetimes of
arbitrary curvature are directly related to those of the classical Kepler problem and that
the value of the energy in the latter is proportional to (minus) the curvature parameter
in the former. This work extended the formalism in [69] to derive the time-dependent
first integrals of motion for non-zero energies in the classical Kepler problem, and time-
dependent configurational invariants for the case of zero energy. We summarize the results
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in the following two diagrams. We have the following mappings for non-zero energy
states:

(T ∗M, 
̃,G = 0) (x0, y0, x
i, yj ; λ)

�
canonical transformations I, II and III

(T ∗M, 
̃,G = 0) (q0, p0, q
i, pj ; λ)

�
canonical transformation IV (k �= 0)

(T ∗M, 
̃,H = 0) (Q0, P0,Q
i, Pj ;ϒ)

�
reduction (H �= 0)

(T ∗	, ω̃,H) (Qi, Pj ;Q0).

The result was achieved by exploiting the parallel Hamiltonian vector fields
(equation (62))

X̂4
G = dϒ

dλ
X̂4

H

for non-zero energies H = E �= 0. The time-independent and time-dependent first integrals
form a Lie algebra in the case of non-zero energies, that algebra being so(4, 2). This was
guaranteed by the canonical nature of the transformations and reduction procedure. To
summarize, we have shown that it is the existence of a TDR of the so(4, 2) spectrum generating
algebra for null geodesic motion in the Einstein static spacetimes (originating from the so(4, 2)
algebra of first integrals) which determines the corresponding spectrum generating algebra
structure in the classical Kepler problem.

We have the following mappings for zero energy states:

(T ∗M, 
̃,G = 0) (x0, y0, x
i, yj ; λ)

�
canonical transformations I and II

(T ∗M, 
̃,G = 0) (x̄0, ȳ0, x̄
i, ȳj ; λ)

�
non-canonical transformation (90)

(T ∗M, 
̃,H = 0) (x̄0, ȳ0, x̄
i, ȳj ; τ )

�
reduction (H = 0)

(T ∗	, ω̃,H) (x̄i, ȳj ; τ ).

The result was achieved by exploiting the parameter change (equation (8)) which ensured
the correspondence of configurational invariants for both systems. For the case of zero energy,
only the time-independent configurational invariants form a Lie algebra, that Lie algebra
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being iso(3). We conclude that the spectrum generating algebras appropriate for non-zero
energies do not extend to the case of zero energy. The so(4, 2) generators will generate
canonical transformations, of these however, only the elements of the iso(3) invariance
algebra will generate canonical transformations which map Kepler orbits to Kepler orbits
and further, these Kepler orbits will all have the same energy E = 0. This is supported by
the analysis of Cariñena et al [68] where they are forced to construct two separate SO(3, 2)
dynamical groups for negative and positive energies. This is also apparent from the quantum
mechanical analogue, since the operators which allow transitions between negative energy
states (similarly for positive energy states) do not provide transitions to zero energy states
[46, 48, 49]. Whether there are alternative methods available to construct similar, or
alternative, Lie algebras extending to the case of zero energy is unknown. It is important
to emphasize that one can always construct an so(4, 2) algebra with structure constants
independent of E = H , i.e. those given by the commutation relations (41). It follows
that if we choose a specific non-zero value of energy E then it is not necessary to scale
out this value to obtain the spectrum generating algebras. For E = 0 one still has
an so(4, 2) algebra structure but it seems that only the iso(3) subalgebra has a physical
significance.

The case E = 0 is the energy for which (3.15) in [54] is invalid. This is due to the
fact that the corresponding time coordinate is, by definition, a constant of motion in that
case. For E = 0 one must instead use the non-canonical time-parameter transformation (76)
presented above. Cordani [54] defines Fock and Bacry–Györgyi variables for E = 0 based
on the assumption that (3.15) in [54] applies, however one must be careful in that these do
not have the same meaning as for the case E �= 0, i.e. they do not provide transitions to
non-zero energy states. These variables are indeed the generators of the spectrum generating
group (50) for geodesic motion on 	 for arbitrary values of k, however, placing k = 0 in
(50) does not give the spectrum generating algebra including H = E = 0 in the Kepler
problem. On placing k = 0 one still has a representation of an so(4, 2) algebra but,
as we have mentioned, the elements of the Lie algebra are not transitive on the space of
Kepler orbits of arbitrary energy. Further, the quantities X and X̄ in [79] are undefined
for H = 0 and so, contrary to their claims, their remarks do not apply to zero energy
states.

We refer the reader to Sudarshan and Mukunda [39], Cariñena et al [68] and McAnally
and Bracken [79] for an account of the action of the spectrum generating group in the classical
Kepler problem.

A dynamical symmetry of a system is the most general type of transformation mapping
solutions into solutions [71]. One can associate first integrals with certain subclasses of such
transformations, and the spectrum generating algebras constitute such a set. Any element
of the invariance group of a system which arises from the regularities in the phase space
of Hamiltonian dynamics and which is not immediately apparent from an inspection of the
geometrical symmetries of the potential itself is usually referred to as a hidden symmetry [80].
Thus, in the case of the Kepler problem the subgroup of symmetry transformations generated
by the components of the Laplace–Runge–Lenz vector are hidden symmetries. The above
analysis has shown that the spectrum generating algebra arises as a result of the existence of
conformal symmetries of Minkowski spacetime and certain spacetimes conformally related
to them. In particular, the hidden symmetries arise as a result of an isometry subgroup of the
relevant spacetime.

We hope that we have clarified the relationship between the Lie group SO(4, 2) as the
Lie group of conformal symmetries of Minkowski spacetime and as the spectrum generating
group of the classical Kepler problem.
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Table 2. The conformal scalars for the CKV of (	, g).

Vector field Conformal scalar Type

Ai φ = −kK−1
+ xi/2 CKV

Mi φ = 0 KV
N φ = K−K−1

+ CKV
Bi φ = 2K−1

+ xi CKV
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Appendix A. Conformal symmetries of Γ

A1. Geometry

The three-dimensional manifold 	 is conformally Euclidean and so the CKVs for 	 are just
the CKVs for the flat three-dimensional Euclidean space E3, see section 3. A basis for the
CKV of E3 is as follows,

Ai = ∂

∂xi
Mi = εkij x

j ∂

∂xk
N = xi

∂

∂xi
Bi = 2xiN − |x|2 ∂

∂xi
(101)

where Mi = εkijM
j

k with Mj

k defined as in (42). The functions φ for these vector fields in 	
are shown in table 2. We now present the commutation relations for the basis of CKV (101):

[Mi ,Mj ] = −εkijMk [Mi ,Aj ] = −εkijAk [Ai ,Aj ] = 0

[Bi ,Bj ] = 0 [Bi ,Mj ] = −εkijBk [Ai ,Bj ] = 2δijN − 2εkijMk

[Bi ,N] = −Bi [Mi ,N] = 0 [Ai ,N] = Ai .

(102)

The Lie algebra (102) is isomorphic to the Lie algebra so(4, 1), see for example [76]. As
we would expect, this Lie algebra is independent of the curvature k. From equation (24) we
can see that the Poisson bracket Lie algebra of quantities XI · y will have the same structure
constants as the Lie algebra of CKV (102) and so this Poisson bracket Lie algebra will also
be isomorphic to so(4, 1). We shall now present the associated quantities XI · y. We shall
write Ai = Ai · y etc,

Ai = yi Mi = εkij x
jyk N = (x · y) Bi = 2xi(x · y)− |x|2yi. (103)

These are the components of the the vector fields Ai ,Mi ,N and Bi along the geodesic tangent
vector y. Only a subset of the quantities (103) will be first integrals of motion. At this point,
we note that the Mi are always KVs for 	 and from table 2 we can see that the following linear
combination of the CKV will always be a KV

Pi = Ai +
k

4
Bi . (104)

Thus it is always possible to find a basis which includes a six-dimensional KV subalgebra
which consists of Mi and Pi . From these KVs we can construct the corresponding six first
integrals Mi and Pi = Pi · y and we note that

Pi = Ai +
k

4
Bi . (105)
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A2. Dynamics on 	

Let us define G± = K2
±|y|2/2. Then consider geodesic motion on 	 as given by the

Hamiltonian functionG+. The first integrals Mi and Pi satisfy

X̂G+(Mi) = 0 X̂G+(Pi ) = 0 (106)

that is, the components of the KVs Ri and Pi are constant along the geodesic flow. Thus, it is
natural to investigate also the variation of the components of the CKVs, given by (103), along
the geodesic flow. We find that for each of Ai ,Mi ,N and Bi , equation (33) and table 2 give
the following,

X̂G+(Ai) = −k
√
G+Ii/2 X̂G+(Mi) = 0

X̂G+(N ) = 2
√
G+

√
G− X̂G+(Bi ) =

√
4G+Ii

(107)

where

Ii =
√

2|y|xi. (108)

This leads to the Poisson brackets

{
√
G+,Ai} = −kIi/4 {

√
G+,Mi} = 0

(109)
{
√
G+,N } = −

√
G− {

√
G+,Bi} = Ii .

The quantities (109) are the rates of change of the quantities XI · y, given by (103), along the
phase flow generated by the Hamiltonian function

√
G+. The complete Lie algebra structure

is as follows:

{
√
G+,Ai} = −kIi/4 {

√
G+,Mi} = 0

{
√
G+,N } = −

√
G− {

√
G+,Bi} = Ii

{
√
G−,Ai} = kIi/4 {

√
G−,Mi} = 0

{
√
G−,N } = −

√
G+ {

√
G−,Bi} = Ii

{Ii , Ij } = 2Mij {
√
G+,

√
G−} = −kN/2

{Ii ,Aj } = −δij (
√
G+ +

√
G−) {Ii ,N } = 0

{Ii ,Bj } = −4δij (
√
G+ −

√
G−)/k.

(110)

The 15 quantities Ai ,Mi ,N ,Bi , Ii ,
√
G−,

√
G+ constitute a TIR of the spectrum generating

algebra so(4, 2) for non-zero values of the curvature k.

A3. TIR of the spectrum generating algebra for the classical Kepler problem

Under the canonical transformations I and II the members of the algebra become

Ai = [|ȳ|2x̄i − 2(x̄ · ȳ)ȳi]/2
√

2 Mi = εkij x̄
j ȳk

N = (x̄ · ȳ) Bi = −2
√

2x̄i Ii = −
√

2|x̄|ȳi√
G± = (|ȳ|2 ± 2k)|x̄|/4.

(111)

Since the transformations are canonical these quantities still constitute a basis for the Lie
algebra so(4, 1). The quantities

√
G+,

√
G− and N give the so(2, 1) energy spectrum

generating algebra for non-zero values of k [16, 48]. Thus the quantities Ai ,Mi ,N and
Bi can be thought of as having a geometrical origin in that they arise as a result of the
CKV of E3. We note that the quantities Pi in equation (105) are the components of the
Laplace–Runge–Lenz vector.
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The above quantities are immediately recognizable (up to constant multiples) as the
so(4, 2) generators for positive and negative energy states corresponding to those generators
given by [16, 41–43, 47, 48, 54, 56, 63].
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[12] Böhm A 1967 Lectures in Theoretical Physics vol 9-B (London: Gordon and Breach) p 327
[13] Bacry H 1967 Lectures in Theoretical Physics vol 9-A (London: Gordon and Breach) p 79
[14] Vitale B 1969 Lectures in Theoretical Physics vol 11 (London: Gordon and Breach) p 405
[15] Lipkin H J 1968 Symmetry Principles at High Energy, 5th Coral Gables Conference ed A Perlmutter et al

(New York: Benjamin) p 261
[16] Mariwalla K 1975 Phys. Rep. 20 287
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